Domination and total domination in cubic graphs of large girth
نویسندگان
چکیده
The domination number γ(G) and the total domination number γt(G) of a graph G without an isolated vertex are among the most well studied parameters in graph theory. While the inequality γt(G) ≤ 2γ(G) is an almost immediate consequence of the definition, the extremal graphs for this inequality are not well understood. Furthermore, even very strong additional assumptions do not allow to improve the inequality by much. In the present paper we consider the relation of γ(G) and γt(G) for cubic graphs G of large girth. Clearly, in this case γ(G) is at least n(G)/4 where n(G) is the order of G. If γ(G) is close to n(G)/4, then this forces a certain structure within G. We exploit this structure and prove an upper bound on γt(G), which depends on the value of γ(G). As a consequence, we can considerably improve the inequality γt(G) ≤ 2γ(G) for cubic graphs of large girth.
منابع مشابه
Domination in Cubic Graphs of Large Girth
We prove that connected cubic graphs of order n and girth g have domination number at most 0.32127n+O ( n g ) .
متن کاملDomination in Graphs of Minimum Degree at least Two and Large Girth
We prove that for graphs of order n, minimum degree δ ≥ 2 and girth g ≥ 5 the domination number γ satisfies γ ≤ ( 1 3 + 2 3g ) n. As a corollary this implies that for cubic graphs of order n and girth g ≥ 5 the domination number γ satisfies γ ≤ ( 44 135 + 82 135g ) n which improves recent results due to Kostochka and Stodolsky (An upper bound on the domination number of n-vertex connected cubic...
متن کاملTotal domination in cubic Knodel graphs
A subset D of vertices of a graph G is a dominating set if for each u ∈ V (G) \ D, u is adjacent to somevertex v ∈ D. The domination number, γ(G) ofG, is the minimum cardinality of a dominating set of G. A setD ⊆ V (G) is a total dominating set if for eachu ∈ V (G), u is adjacent to some vertex v ∈ D. Thetotal domination number, γt (G) of G, is theminimum cardinality of a total dominating set o...
متن کاملDomination number of cubic graphs with large girth
We show that every n-vertex cubic graph with girth at least g have domination number at most 0.299871n + O (n/g) < 3n/10 + O (n/g).
متن کاملDomination parameters of Cayley graphs of some groups
In this paper, we investigate domination number, $gamma$, as well as signed domination number, $gamma_{_S}$, of all cubic Cayley graphs of cyclic and quaternion groups. In addition, we show that the domination and signed domination numbers of cubic graphs depend on each other.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 174 شماره
صفحات -
تاریخ انتشار 2014